Part Number Hot Search : 
TSOP1 K0389 BSP29507 CXH16 APW8707 AX93221 K400101 332MD
Product Description
Full Text Search
 

To Download ADL5202 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  wide dynamic range, high speed, digitally controlled vga data sheet ADL5202 rev. b document feedback information furnished by analog devices is be lieved to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 ? 2011 C 2013 analog devices, inc. all rights reserved. technical support www.analog.com features dual independent , digitally controlled vgas ? 11.5 db to +20 db gain range 0.5 db 0.1 db step size 150 ? differential input and output 7.5 db noise figure at maximum gain oip3 > 50 dbm at 200 mhz ? 3 db upper frequency bandwidth of 700 mh z multipl e c ontrol i nterface o ptions parallel 6 - bit c ontrol i nterface (with latch) serial periph eral i nterface (spi) (with fast attack) gain u p/ d own mode wide input dynamic range low power mode option power - d own control single 5 v s upply o peration 40- lead, 6 mm 6 mm lfcsp p ackage a pplications differential adc drivers high if sampling receivers high output power if amplification instrumentation functional block dia gram +20db gnd vpos vina+ vina? 0db to 31.5db 150 ? 150 ? 150 ? 150 ? side a spi with fa, parallel with latch, up/dn side b spi with fa, parallel with latch, up/dn vouta+ vouta? ADL5202 pm mode0, mode1 +20db vinb+ vinb? voutb+ voutb? 0db to 31.5db 09387-001 logic logic control circuitry pwupa pwupb figure 1. general description the ADL5202 is a digitally controlled, variable gain, wide band - width amplifier that provides precise gain control, high output ip3, and low noise figure. the excellent di stortion performance and high signal bandwidth make the ADL5202 an excellent gain control device for a variety of receiver applications. the ADL5202 also incorporates a low power mode option that lowers the supply current . for wide input dynamic range applications, the ADL5202 pro vides a broad 31.5 db gain range with 0.5 db res olution. the gain is adjustable through multiple gain control interface options: parallel, serial peripheral interface , and up/down. incorporating proprietary distortion cancellation techniques, the ADL5202 achieves a better than 50 dbm output ip3 at frequencies approaching 200 mhz for most gain settings. the ADL5202 is powered on by applying the appropriate logic level to the pwup x pins . the quiescent current of the ADL5202 is typically 160 ma in low power mode. when configured in high performance mode for more demanding applications, the quiescent current is 210 ma . when power ed down, the ADL5202 consumes less than 14 ma and offers excellent input - to - output isolation. the gain setting is preserved during power - down. fabricated on an analog devices, inc., high speed si ge process, th e ADL5202 provides precise gain adjustment capabilities with good disto rtion performance and low phase error. the ADL5202 amplifier comes in a compact, thermally enhanced 40 - lead, 6 mm 6 mm lfcsp package and operates over a temperature range of ? 40c to +85 c.
ADL5202 data shee t rev. b | page 2 of 32 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 functional block diagram .............................................................. 1 general description ......................................................................... 1 revision history ............................................................................... 2 specifications ..................................................................................... 3 absolute maximum ratings ............................................................ 5 esd caution .................................................................................. 5 pin configuration and function descriptions ............................. 6 typical performance characte ristics ............................................. 8 characterization and test circuits ............................................... 15 theory of operation ...................................................................... 16 digital interface overview ........................................................ 16 parallel digital interface ............................................................ 16 serial peripheral interface (spi) ............................................... 16 gain up/down interface ........................................................... 16 truth table .................................................................................. 17 logic timing ............................................................................... 17 circuit description ......................................................................... 18 basic structure ............................................................................ 18 applications information .............................................................. 19 basic connections ...................................................................... 19 adc driving ............................................................................... 19 layout considerations ............................................................... 21 evaluation board ............................................................................ 22 evaluation board control software ......................................... 22 evaluation board schematics and art work ............................ 23 evaluation board configuration options ............................... 27 outline dimensions ....................................................................... 29 ordering guide .......................................................................... 29 revision history 9/13 rev. a to rev. b changed logic pins absolute maximum rating from 3.6 v to ?0.3 v to +3.6 v (not to exceed |vpos ? 0.5 v| at any time) .... 5 1 2 /12 rev . 0 to rev . a changes to layo ut consideration section .................................. 2 1 10/ 11 revision 0: initial version
data sheet ADL5202 rev. b | page 3 of 32 specifications v s = 5 v, t a = 25c, r s = r l = 150 ? at 100 mhz, high performance m ode , 2 v p - p differential output, unless otherwise noted. table 1 . parameter test c onditions/comments min typ max unit dynamic performance ? 3 db bandwidth v out < 2 v p - p (5.2 dbm) 700 mhz slew rate 5.5 v/ns input return loss (s11) 100 mhz ?17.7 db output return loss (s22) 100 mhz ?16.5 db input stage vina+, vinb+ and vina?, vinb? pins maximum input swing (differential) gain code = 111111 10.8 v p -p differential input resistance 150 ? common - mode input voltage 1.5 v cmrr gain code = 000000 40 db gain maximum voltage gain gain code = 00000 0 20 db minimum voltage gain gain code = 111111 ?11.5 db gain step size 0.5 db gain flatness 30 mhz < f c < 200 mhz 0.285 db gain temperature sensitivity gain code = 000000 0.012 db/ c gain step response for v in = 0.2 v, gain code = 111111 to 000000 15 ns gain conformance error over 10 db gain range 0.03 db phase conformance error over 10 db gain range 1.0 d eg rees output stage v out x + and v out x ? pins output voltage swing at p1db, gain code = 000000 10 v p -p differential o utput resistance differential 150 ? noise/harmonic performance 46 mhz gain code = 000000, high performance mode second harmonic v out = 2 v p -p ?92 dbc third harmonic v out = 2 v p -p ?105 dbc output ip3 v out = 2 v p - p composite 50 db m 70 mhz gain code = 000000, high performance mode second harmonic v out = 2 v p -p ?96 dbc third harmonic v out = 2 v p -p ?105 dbc output ip3 v out = 2 v p - p composite 50 dbm 140 mhz gain code = 000000, high performance mode noise figur e 7 .5 db second harmonic v out = 2 v p -p ?86 dbc third harmonic v out = 2 v p -p ?105 dbc output ip3 v out = 2 v p - p composite 50 dbm output 1 db compression point 19.5 db m 300 mhz gain c ode = 000000, high performance mode second harmon ic v out = 2 v p -p ?77 dbc third harmonic v out = 2 v p -p ?91 dbc output ip3 v out = 2 v p - p composite 47 dbm
ADL5202 data sheet rev. b | page 4 of 32 parameter test conditions/comments min typ max unit power-up interface pwupa, pwupb pins power-up threshold minimum voltage to enable the device 1.4 v maximum voltage to enable the device 3.3 v pwupx input bias current 1 a gain control interface v ih minimum/maximum voltage for a logic high 1.4 3.3 v v il maximum voltage for a logic low 0.8 maximum input bias current 1 a spi timing latcha and latchb, sclk, sdio, data pins f sclk 1/t sclk 20 mhz t dh data hold time 5 ns t ds data setup time 5 ns t pw sclk high pulse width 5 ns power interface supply voltage 4.5 5.5 v quiescent current, both cha nnels high performance mode 210 ma t a = 85c 250 ma low power mode 160 ma t a = 85c 180 ma power-down current, both channels pwupx low 14 ma timing diagrams sclk ___ ___ csa, csb sdio t sclk t ds t ds t dh t pw t dh dnc dnc dnc dnc dnc dnc dnc r/w fa1 fa0 d5 d4 d3 d2 d1 d0 09387-002 figure 2. spi interface read/write mode timing diagram dn up t ds t ds t pw t ds t dh updn_dat updn_clk 09387-103 reset figure 3. up/down mode timing diagram latcha, latchb a5 to a0 b5 to b0 t dh 09387-104 figure 4. parallel mode timing diagram
data sheet ADL5202 rev. b | page 5 of 32 absolute maximum rat ings table 2 . parameter rating supply voltage, v pos 5.5 pwupa, pwupb, a0 to a5, b0 to b5, mode0, mode1, pm, la tcha, latch b ? 0.3 v to + 3.6 v (not to exceed |vpos ? 0.5 v| at any time) input voltage, v in+ ,v in ? +3.6 v to ? 1.2 v internal power dissipation 1.6 w ja (exposed paddle soldered down) 34.6 c/w jc (at exposed paddle) 3.6 c/w maximum junction temperatu re 140 c operating temperature range ? 40 c to +85 c storage temperature range ? 65 c to +150 c lead temperature (soldering , 60 sec) 240 c stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a s tress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect dev ice reliability. esd caution
ADL5202 data sheet rev. b | page 6 of 32 pin configuration and fu nction descriptions exposed paddle notes 1. nc = no connect. 2. the exposed paddle (ep) must be connected to a low impedance ground pad. 1 2 a4 3 a5 4 mode1 5 mode0 6 pm 7 gnd 8 sido/b5 9 sclk/b4 10 23 vpos 24 vpos 25 vpos 26 vpos 27 vpos 28 vpos 29 30 22 21 1 1 g s 0 / f a _ b / b 2 1 2 u p d n _ c l k _ b / b 1 1 3 u p d n _ d a t _ b / b 0 1 5 1 7 p w u p b 1 6 1 8 g n d 1 9 2 0 1 4 l a t c h b 3 3 p w u p a 3 4 g n d 3 5 3 6 3 7 l a t c h a 3 8 u p d n _ d a t _ a / a 0 3 9 u p d n _ c l k _ a / a 1 4 0 f a _ a / a 2 3 2 3 1 pin 1 indicator csa/a3 gs1/csb/b3 vinb? vinb+ ADL5202 voutb? voutb+ vouta+ vouta? vina+ vina? top view (not to scale) voutb+ voutb? v o u t a + vouta? 09387-003 figure 5. pin configuration table 3. pin function descriptions pin no. mnemonic description 1 csa /a3 channel a select (csa ). when serial mode is enabled, a logic low (0 v csa 0.8 v) selects channel a. bit 3 for channel a parallel gain control interface (a3). 2 a4 bit 4 for channel a parallel gain control interface. 3 a5 bit 5 (msb) for channel a parallel gain control interface. 4 mode1 msb for mode control. with the mode0 pin, selects parallel, spi, or up/down interface mode. 5 mode0 lsb for mode control. with the mode1 pin, selects parallel, spi, or up/down interface mode. 6 pm performance mode. a logic low (0 v pm 0.8 v) enables high performance mode. a logic high (1.4 v pm 3.3 v) enables low power mode. 7, 18, 33, ep gnd ground. the exposed paddle (ep) mu st be connected to a low impedance ground pad. 8 sdio/b5 serial data input/o utput (sdio). when csa or csb is pulled low, sdio is used for reading and writing to the spi port. bit 5 for channel b parallel gain control interface (b5). 9 sclk/b4 serial clock input in spi mode (sclk). bit 4 for channel b parallel gain control interface (b4). 10 gs1/csb /b3 msb for gain step size control in up/down mode (gs1). channel b select (csb ). when serial mode is enabled, a logic low (0 v csb 0.8 v) selects channel b. bit 3 for channel b parallel gain control interface (b3). 11 gs0/fa_b/b2 lsb for gain step size control in up/down mode (gs0). fast attack (fa_b). in serial mode, a logic high (1.4 v fa_b 3.3 v) attenuates channel b according to the fa setting in the spi word. bit 2 for channel b parallel gain control interface (b2). 12 updn_clk_b/b1 clock interface for channel b up/down function (updn_clk_b). bit 1 for channel b parallel gain control interface (b1). 13 updn_dat_b/b0 data pin for channel b up/down function (updn_dat_b). bit 0 for channel b parallel gain control interface (b0). 14 latchb channel b latch. a logic low (0 v latchb 0.8 v) allows gain changes on channel b. a logic high (1.4 v latchb 3.3 v) prevents gain changes on channel b.
data sheet ADL5202 rev. b | page 7 of 32 pin no. mnemonic description 15 vinb? channel b negative input. 16 vinb+ channel b positive input. 17 pwupb channel b power - up. a logic high (1.4 v pwupb 3.3 v) enables channel b. 19, 21 voutb? channel b negative output. 20, 22 voutb+ channel b positive output. 23, 24, 25, 26, 27, 28 vpos positive power supply. 29, 31 vouta+ channel a positive output. 30, 32 vouta? channel a negative output. 34 pwu pa channel a power - up. a logic high (1.4 v pwupa 3.3 v) enables channel a. 35 vina+ channel a positive input. 36 vina? channel a negative input. 37 latcha channel a latch. a logic low (0 v latcha 0.8 v) allows gain changes on channel a. a logic high (1.4 v latcha 3.3 v) prevent s gain changes on channel a. 38 updn_dat_a/a0 data pin for channel a up/down function (updn_dat_a). bit 0 for channel a parallel gain control interface (a0). 39 updn_clk_a/a1 clock interface for channel a up/down f unction (updn_clk_a). bit 1 for channel a parallel gain control interface (a1). 40 fa_a/a2 fast attack (fa_a). in serial mode, a logic high (1.4 v fa_a 3.3 v) attenuates channel a according to fa setting in the spi word. bit 2 for channel a parallel gain control interface (a2).
ADL5202 data shee t rev. b | page 8 of 32 typical performance characteristics v s = 5 v, t a = 25c, r s = r l = 150 ? at 200 mhz, high performance m ode , 2 v p - p differential output , unless otherwise noted. ?15 ?10 ?5 0 5 10 15 20 25 0 10 20 30 40 50 60 70 gain (db) gain code 46mhz 140mhz 300mhz 09387-004 figure 6. gain vs. gain code at 4 6 mhz, 140 mhz, and 300 mhz 0 5 10 15 20 25 30 35 40 45 ?15 ?10 ?5 0 5 10 15 20 25 noise figure (db) programmed gain (db) 09387-010 figure 7. noise figure vs. programmed gain at 140 mhz 0 5 10 15 20 25 ?15 ?10 ?5 0 5 10 15 20 25 op1db (dbm) programmed gain (db) 09387-005 input max ratings boundary figure 8 . op1db vs. programmed gain at 140 mhz ?20 ?15 ?10 ?5 0 5 10 15 20 25 10 100 1000 gain (db) frequenc y (mhz) 4db 3db 2db 1db 0db ?1db ?2db ?3db ?4db ?5db ?6db ?7db ?8db ?9db ?10db ?11db 20db 19db 18db 17db 16db 15db 14db 13db 12db 11db 10db 9db 8db 7db 6db 5db 09387-007 figure 9. gain vs. frequency response (e very 1 db step) 0 5 10 15 20 25 30 35 40 45 50 0 100 200 300 400 500 600 noise figure (db) frequenc y (mhz) mid gain (5db) max gain (20db) t a = ?40c t a = +25c t a = +85c min gain (?11.5db) 09387-013 figure 10 . no ise figure vs. frequency at max, mid, and min gain output s frequenc y (mhz) 0 5 10 15 20 25 0 50 100 150 200 250 300 350 400 op1db (dbm) t a = ?40c t a = +25c t a = +85c 09387-008 figure 11 . op1db vs. frequency at maximum gain, three temperatures
data sheet ADL5202 rev. b | page 9 of 32 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 400 oip3 (dbm) frequenc y (mhz) ?11.5db 0db 10db 20db 09387-0 1 1 figure 12 . ou tput third - order intercept vs. frequency at four gain codes frequenc y (mhz) 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 400 oip3 (dbm) t a = ?40c t a = +25c t a = +85c 09387-016 figure 13 . output third - order intercept vs. frequency, three temperatures at 2 v p - p composite ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?15 ?10 ?5 0 5 10 15 20 25 imd3 (dbc) programmed gain (db) 09387-018 46mhz 140mhz 300mhz figure 14 . two - tone output imd3 vs. program med gain, at 46 mhz, 140 mhz, 300 mhz 20 25 30 35 40 45 50 55 60 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 oip3 (dbm) p out (dbm) ?11.5db 0db 10db 20db 09387-014 input max ratings boundary figure 15 . output third - order intercept vs. power at four gain codes, frequency = 140 mhz at 2 v p - p composite 30 35 40 45 50 55 60 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 oip3 (dbm) p out (dbm) t a = ?40c t a = +25c t a = +85c 09387-019 figure 16 . output third - order intercept vs. powe r, frequency = 140 mhz, three temperatures ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 0 50 100 150 200 250 300 350 400 imd3 (dbc) frequenc y (mhz) t a = ?40c t a = +25c t a = +85c 09387-021 figure 17 . two - tone output imd3 vs. frequency, three temperatures
ADL5202 data shee t rev. b | page 10 of 32 ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?150 ?140 ?130 ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 ?50 0 50 100 150 200 250 300 350 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) frequenc y (mhz) ?11.5db 0db 10db 20db 09387-023 figure 18 . harmonic distortion vs. frequency at four gain code s ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?140 ?130 ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 0 50 100 150 200 250 300 350 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) frequenc y (mhz) t a = ?40c t a = +25c t a = +85c 09387-028 figure 19 . harmonic distortion vs. frequency, three temperatures 0 5 10 15 20 25 ?15 ?10 ?5 0 5 10 15 20 25 op1db (dbm) programmed gain (db) 09387-006 input max ratings boundary figure 20 . op1db vs. programmed gain at 140 mhz, low power mode ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?140 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?6 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) p out (dbm) ?11.5db 0db 10db 20db 09387-026 figure 21 . harmonic distortion vs. power at four gains, freque ncy = 140 mhz ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?140 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?6 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) p out (dbm) t a = ?40c t a = +25c t a = +85c 09387-031 figure 22 . harmonic distortion vs. power, frequency = 140 mhz, three temperatures frequenc y (mhz) 0 5 10 15 20 25 0 50 100 150 200 250 300 350 400 op1db (dbm) t a = ?40c t a = +25c t a = +85c 09387-009 figure 23 . op1db vs. frequency at maximum gain, three temperature s, low power mode
data sheet ADL5202 rev. b | page 11 of 32 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 400 oip3 (dbm) frequenc y (mhz) ?11.5db 0db 10db 20db 09387-012 figure 24 . output third - order intercept vs. frequency at four gain codes, low power mode at 2 v p - p composite frequenc y (mhz) 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 400 oip3 (dbm) t a = ?40c t a = +25c t a = +85c 09387-017 figure 25 . output third - order intercept vs. frequency, three temperatures, low power mode ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 ?15 ?10 ?5 0 5 10 15 20 25 imd3 (dbc) programmed gain (db) 09387-022 46mhz 140mhz 300mhz figure 26 . two - tone output imd3 vs. programmed gain at 46 mhz, 140 mhz, 300 mhz; low power mode 20 25 30 35 40 45 50 55 60 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 oip3 (dbm) p out (dbm) ?11.5db 0db 10db 20db 09387-015 input max ratings boundry figure 27 . output third - order intercept vs. power at four gain codes, frequency = 140 mhz, low power mode 20 25 30 35 40 45 50 55 60 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 oip3 (dbm) p out (dbm) t a = ?40c t a = +25c t a = +85c 09387-020 figure 28 . output third - order intercept vs. power, three temperatures, low power mode at 2 v p - p composite ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 0 50 100 150 200 250 300 350 400 imd3 (dbc) frequenc y (mhz) t a = ?40c t a = +25c t a = +85c 09387-025 figure 29 . two - tone output imd3 vs. frequency, three temperatures, low power mode
ADL5202 data shee t rev. b | page 12 of 32 ?120 ?1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?150 ?140 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 0 50 100 150 200 250 300 350 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) frequenc y (mhz) ?11.5db 0db 10db 20db 09387-024 figure 30 . harmonic distortion vs. frequency at four gain code s, low power mode 0 50 100 150 200 250 300 350 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) frequenc y (mhz) t a = ?40c t a = +25c t a = +85c ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?150 ?140 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 09387-029 figure 31 . harmonic distortion vs. frequency, three temperatures, low power mode ch1 200mv m 10ns 10gs/s it 4ps/pt a ch4 1.12v ? ? ch4 1mv 1 4 09387-036 figure 32 . enable time do main response ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?140 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?70 ?60 ?6 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) p out (dbm) ?11.5db 0db 10db 20db 09387-027 figure 33 . harmonic distortion vs. power at four gain code s, frequency = 140 mhz, low power mode ?6 ?5 ?4 ?3 ?2 ?1 0 1 2 3 4 5 6 harmonic dis t ortion hd3 (dbc) harmonic dis t ortion hd2 (dbc) p out (dbm) ? 1 10 ?100 ?90 ?80 ?70 ?60 ?50 ?130 ?120 ? 1 10 ?100 ?90 ?80 ?70 t a = ?40c t a = +25c t a = +85c 09387-032 figure 34 . harmonic distortion vs. power, frequency = 140 mhz, three temperatures, low power mode ch1 200mv/div ch4 1v/div volt age time ( 10ns/div) 09387-033 figure 35 . disable time domain response
data sheet ADL5202 rev. b | page 13 of 32 09387-030 ch2 500mv/div ch3 50mv/div vo lt age time ( 10ns/div) figure 36 . gain step time domain response s 1 1 phase (degrees) s 1 1 magnitude (db) frequenc y (mhz) ?200 ?150 ?100 ?50 0 50 100 150 200 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 10 100 1000 magnitude max gain magnitude min gain phase max gain phase min gain 09387-035 figure 37 . s11 magnitude and phase vs. frequency ?1.0 ?0.8 ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 0.8 1.0 ?15 ?10 ?5 0 5 10 15 20 25 gain error (db) programmed gain (db) 09387-037 figure 38 . gain step error, frequency = 140 mhz 0pf 5.6pf differential input 200mv/div volt age time ( 1ns/div) 09387-034 figure 39 . large signal pulse response, 0 pf and 5.6 pf, 2 v p - p composite s22 phase (degrees) s22 magnitude (db) frequenc y (mhz) ?200 ?150 ?100 ?50 0 50 100 10 100 1000 magnitude max gain magnitude min gain phase max gain phase min gain 09387-038 150 200 250 300 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 figure 40 . s22 magnitude and phase vs. frequency ?100 ?95 ?90 ?85 ?80 ?75 ?70 ?65 ?60 0 100 200 300 400 500 600 700 800 900 1000 channel isolation (db) frequenc y (mhz) channel a to channel b channel a = max gain channel b = all gains channel b to channel a channel b = max gain channel a = all gains 09387-043 figure 41 . channel isolation vs. frequency
ADL5202 data shee t rev. b | page 14 of 32 ?60 ?50 ?40 ?30 ?20 ?10 0 10m 100m 1g reverse isol a tion (db) frequenc y (hz) 09387-039 figure 42 . reverse isolation vs. frequency 0 0.2 0.4 0.6 0.8 1.0 10 100 1000 grou p del a y (ns) frequenc y (mhz) max mid min 09387-040 figure 43 . group delay vs. frequency at max, mid, and min gain outputs 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50 60 70 phase v ari a tion (degrees) gain code 350mhz 300mhz 250mhz 200mhz 150mhz 100mhz 50mhz 09387-041 figure 44 . phase variation vs. gain code ?60 ?50 ?40 ?30 ?20 ?10 0 10 100 1000 reverse isol a tion (db) frequenc y (mhz) 09387-042 figure 45 . disable - state reverse isolation vs. frequency 0 10 20 30 40 50 60 10m 100m 1g common-mode rejection r a tio, cmrr (db) frequenc y (hz) 09387-044 figure 46 . common - mode rejection ratio vs. frequency
data sheet ADL5202 rev. b | page 15 of 32 characterization and test circuits 0.1f 0.1f l1 1h l2 1h 0.1f 0.1f +5v 6 a0 t o a5 ac 50? traces 50? traces 50? 50? 50? 50? ac 1/2 ADL5202 09387-060 figure 47 . test circuit for s - parameters on dedicated 50 ? differential - to- differential board c1 0.1f c2 0.1f tc3-1t t1 l1 1h l2 1h c3 0.1f c4 0.1f r1 62? r2 62? r4 25? r3 25? etc1-1-13 t2 50? pad loss = 11db +5v 6 a0 to a5 50? ac 1/2 ADL5202 09387-062 figure 48 . test circuit for distortion, gain, and noise 09387-063 figure 49 . differential - to- differential characterization board, circuit side layout
ADL5202 data sheet rev. b | page 16 of 32 theory of operation digital interface overview the ADL5202 vga has three digital gain control options: the parallel control interface, serial peripheral interface, and gain up/down interface. the desired gain control option is selected via two control pins, mode0 and mode1 (see table 4 for the truth table for the mode control pins). the gain code is in a 6-bit binary format. a voltage of between 1.4 v and 3.3 v is required for a logic high. three pins are common to all gain control options: pm, pwupa, and pwupb. pm allows the user to choose operation in nominal mode or high performance mode. pwupa and pwupb are power-up pins for channel a and channel b, respectively. physical pins are shared among the three interfaces, resulting in as many as three different functions per digital pin (see table 3). table 4. digital control interface selection truth table mode1 mode0 interface 0 0 parallel control 0 1 serial peripheral (spi) 1 0 up/down 1 1 up/down parallel digital interface the parallel digital interface uses six binary bits (bits[a5:a0] or bits[b5:b0]) and a latch pin (latcha or latchb) per amplifier. the latch pin controls whether the input data latch is transparent or latched. in transparent mode, gain changes as input gain control bits change. in latched mode, gain is determined by the latched gain setting and does not change with changing input gain control bits. serial peripheral interface (spi) the spi uses three pins (sdio, sclk, and csa or csb ). the spi data register consists of two bytes: six gain control bits, two attenuation step size address bits, one read/write bit, and seven dont care bits. sdio is the serial data input and output pin. the sclk pin is the serial clock, and csa or csb is the channel select pin. data read/write do not care (7 bits) fast attack attenuation step size address gain control d0 d1 d2 d3 d4 d5 fa0 fa1 r/w dnc dnc dnc dnc dnc dnc dnc lsb lsb msb msb 09387-046 figure 50. 16-bit spi register to write to the spi register, csa or csb must be pulled low and 16 clock pulses must be applied to sclk. individual channel spi registers can be selected by pulling csa or csb low. by pulling the csa and csb pins low simultaneously, the same data can be written to both spi registers. to read the spi register value, the r/w bit must be set high, csa or csb must be pulled low, and the part must be clocked. after the register has been read out during the next 16 clock cycles, the spi is automatically put into write mode. note that there is only one sdio pin. readback from the registers should be per- formed individually. fast attack the fast attack feature, accessible via the spi, allows the gain to be reduced from its present gain setting by a predetermined step size. four different attenuation step sizes are available. the truth table for fast attack is shown in table 5. table 5. spi 2-bit attenuation step size truth table fa1 fa0 step size (db) 0 0 2 0 1 4 1 0 8 1 1 16 spi fast attack mode is controlled by the fa_a or fa_b pin. a logic high on the fa_a or fa_b pin results in an attenuation that is selected by bits[fa1:fa0] in the spi register. gain up/down interface the gs1 and gs0 pins control the up/down gain step function. gain is increased by a clock pulse on the updn_clk_a pin or the updn_clk_b pin (rising and falling edges) when the updn_dat_a or updn_dat_b pin is high. gain is decreased by a clock pulse on the updn_clk_a or updn_clk b pin when the updn_dat_a or updn_clkb pin is low. the truth table for the gain step function is shown in table 6. reset is detected by a rising edge latching data having one polarity, with the falling edge latching the opposite polarity. reset results in a minimum binary gain code of 111111. table 6. step size control truth table gs1 gs0 step size (db) 0 0 0.5 0 1 1 1 0 2 1 1 4 the step size is selectable using the gs1 and gs0 pins. the gain is limited by the top and bottom of the control range. dn up reset updn_dat updn_clk 09387-045 figure 51. up/down timing
data sheet ADL5202 rev. b | page 17 of 32 truth table table 7. gain code vs. voltage gain lookup table 6-bit binary gain code voltage gain (db) 6-bit binary gain code voltage gain (db) 000000 20 100000 4 000001 19.5 100001 3.5 000010 19 100010 3 000011 18.5 100011 2.5 000100 18 100100 2 000101 17.5 100101 1.5 000110 17 100110 1 000111 16.5 100111 0.5 001000 16 101000 0 001001 15.5 101001 ?0.5 001010 15 101010 ?1 001011 14.5 101011 ?1.5 001100 14 101100 ?2 001101 13.5 101101 ?2.5 001110 13 101110 ?3 001111 12.5 101111 ?3.5 010000 12 110000 ?4 010001 11.5 110001 ?4.5 010010 11 110010 ?5 010011 10.5 110011 ?5.5 010100 10 110100 ?6 010101 9.5 110101 ?6.5 010110 9 110110 ?7 010111 8.5 110111 ?7.5 011000 8 111000 ?8 011001 7.5 111001 ?8.5 011010 7 111010 ?9 011011 6.5 111011 ?9.5 011100 6 111100 ?10 011101 5.5 111101 ?10.5 011110 5 111110 ?11 011111 4.5 111111 ?11.5 logic timing to write to the ADL5202 , refer to the timing shown in figure 2 (reproduced in this section as figure 52). the write mode uses a 16-bit serial word on the sdio pin. the r/w of the word must be low to write bits[d0:d5], which are the binary weighted codes for the attenuation level (0 = minimum attenuation, 63 = maximum attenuation). the fa0 and fa1 bits control the fast attack step size. the dnc bits are nonfunctional, do not care bits. reading the ADL5202 spi register requires the following two steps: 1. set the r/w bit high using a 16-bit word and the timing described in this section and figure 52. all other bits are ignored when the r/w bit is high. 2. the sdio is used as an output during the next sequence. the written pattern is serially clocked out on sdio using 16 clocks and the timing described in this section and figure 52. the r/w bit automatically returns low to the write state following the read sequence. sclk sdio t sclk t ds t ds t dh t pw t dh dnc dnc dnc dnc dnc dnc dnc r/w fa1 fa0 d5 d4 d3 d2 d1 d0 ___ ___ csa, csb 09387-152 figure 52. spi interface read/write mode timing diagram
ADL5202 data sheet rev. b | page 18 of 32 circuit description basic structure the ADL5202 is a dual, differential, variable gain amplifier, with each amplifier consisting of a 150 digitally controlled, passive attenuator that is followed by a highly linear transconductance amplifier with feedback. attenuator logic ref vin+ vin? vout+ vout? digital inputs parallel, spi, fast attack up/down 1/2 of ADL5202 g m amp 09387-047 figure 53. simplified schematic input system the dc voltage level at the inputs of each amplifier is set by two independent internal voltage reference circuits to approximately 1.6 v. the references are not accessible and cannot be adjusted. each amplifier can be powered down by pulling the correspond- ing power-up pin down to ground (logic low). when powered down, the total current of each amplifier reduces to 7 ma (typical). the dc level at the inputs remains at approximately 1.6 v, regardless of the state of the pwupa or pwupb pin. output amplifier the gain of the output amplifier is set to 22 db when driving a 150 load. the input and output resistance of this amplifier is set to 150 in matched condition. if the load or the source resistance is different from 150 , the following equations can be used to determine the resulting gain and input/output resistances. voltage gain = a v = 0.09 (2000)// r l r in = (2000 + r l )/(1 + 0.09 r l ) s21 (gain) = 2 r in /( r in + r s ) a v r out = (2000 + r s )/(1 + 0.09 r s ) note that at the maximum attenuation setting, r s , as seen by the output amplifier, is the output resistance of the attenuator, which is 150 . however, at minimum attenuation, r s is the source resistance that is connected to the input of the part. the dc current to the outputs of each amplifier is supplied through two external chokes. the inductance of the chokes and the resistance of the load, in parallel with the output resistance of the device, add a low frequency pole to the response. the para- sitic capacitance of the chokes adds to the output capacitance of the part. this total capacitance, in parallel with the load and output resistance, sets the high frequency pole of the device. generally, the larger the inductance of the choke, the higher its parasitic capacitance. therefore, this trade-off must be considered when the value and type of the choke are selected. for an operation frequency of 15 mhz to 700 mhz driving a 150 load, 1 h chokes with a self resonant frequency (srf) of 160 mhz or higher are recommended (such as the 0805ls-102xjbb from coilcraft). if higher value chokes are used, a 4 mhz zero, due to the internal ac-coupled feedback, causes an increase in s21 of up to 6 db at frequencies below 4 mhz. the supply current of each amplifier consists of about 35 ma through the vpos pin and 50 ma through the two chokes combined. the latter increases with temperature at approximately 2.5 ma per 10c. the total choke current increases to 75 ma for high performance mode. each amplifier has two output pins for each polarity, and they are oriented in an alternating fashion. when designing the board, care should be taken to minimize the parasitic capacitance due to the routing that connects the corresponding outputs together. to minimize the parasitic capacitance, a good practice is to avoid any ground or power plane under this routing region and under the chokes. gain control the gain of each amplifier can be adjusted using the parallel control interface, the serial peripheral interface, or the gain up/down interface. in general, the gain step size is 0.5 db, but larger sizes can be programmed using the various interfaces, as described in the digital interface overview section. each amplifier has a maximum gain of +20 db (code 0) to ?11.5 db (code 63). the noise figure of each amplifier is approximately 7.5 db at maximum gain setting, and it increases as the gain is reduced. the increase in noise figure is equal to the reduction in gain. the linearity of the part measured at the output is first-order independent of the gain setting. from ?4 db to +20 db gain, oip3 is approximately 50 dbm into 150 load at 200 mhz (0 dbm per tone). at gain settings below ?4 db, oip3 drops to approximately 40 dbm.
data sheet ADL5202 rev. b | page 19 of 32 applications information basic connections figure 54 shows the basic connections for operating the ADL5202 . a voltage between 4.5 v and 5.5 v should be applied to the vpos pins. each supply pin should be decoupled with at least one low inductance, surface-mount ceramic capacitor of 0.1 f, placed as close as possible to the device. the outputs of the ADL5202 must be pulled up to the positive supply with 1 h rf chokes. the differential outputs are biased to the positive supply and require ac coupling capacitors, pref- erably 0.1 f. similarly, the input pins are at bias voltages of about 1.6 v above ground and should be ac-coupled as well. the ac coupling capacitors and the rf chokes are the principle limitations for operation at low frequencies. the digital pins (mode control pins, associated spi and parallel gain control pins, pm, pwupa, and pwupb) operate on a voltage of 3.3 v. to enable each channel of the ADL5202 , the pwupa or pwupb pin must be pulled high (1.4 v pwupa/pwupb 3.3 v). taking pwupa or pwupb low puts the channels of the ADL5202 in sleep mode, reducing current consumption to approximately 7 ma per channel at ambient. adc driving the ADL5202 is a highly linear, variable gain amplifier that is optimized for adc interfacing. the output imds and noise floor remain constant throughout the 31.5 db gain range. this is a valuable feature in a variable gain receiver where it is desirable to maintain a constant instantaneous dynamic range as the receiver range is modified. the output noise is 18 nv/hz, which is compatible with 14- or 16-bit adcs. the two-tone imds are usually greater than ?100 db for ?1 dbm into 150 or 2 v p-p output. the 150 output impedance makes the task of designing a filter for the high input impedance adcs more straightforward. 0.1f 3.3v 0.1f ac 2 r s r s 2 balanced source 0.1f 0.1f ac 2 r s r s 2 balanced source channel a gain control interface channel b gain control interface gain mode interface 0.1f 0.1f 0.1f 0.1f 0.1f 0.1f 0.1f vpos 1h 1h 1 2 a4 3 a5 4 mode1 5 mode0 6 pm 7 gnd 8 sido/b5 9 sclk/b4 10 23 vpos 24 vpos 25 vpos 26 vpos 27 vpos 28 vpos 29 30 22 21 1 1 g s 0 / f a _ b / b 2 1 2 u p d n _ c l k _ b / b 1 1 3 u p d n _ d a t _ b / b 0 1 5 1 7 p w u p b 1 6 1 8 g n d 1 9 2 0 1 4 l a t c h b csa/a3 gs1/csb/ b3 vinb? vinb+ ADL5202 exposed paddle voutb? voutb+ vouta+ vouta? voutb+ voutb? 3 3 p w u p a 3 4 g n d 3 5 3 6 3 7 l a t c h a 3 8 u p d n _ d a t _ a / a 0 3 9 u p d n _ c l k _ a / a 1 4 0 f a _ a / a 2 3 2 3 1 vina+ vina? v o u t a + vouta? 0.1f 0.1f r l 0.1f 0.1f r l balanced load 0.1f vpos vpos 1h 1h balanced load 3.3v 3.3v 09387-048 figure 54. basic connections
ADL5202 data sheet rev. b | page 20 of 32 50? a c 1 :3 75 ? 75 ? 1 . 0 h 5 v 1 . 0 h 5 v v ref v ref 33 ? 33 ? 4 p f 5v 0.1f 0.1f 0.1f 0.1f digital interface 1/2 ADL5202 ad9268 56 n h 56 n h 09387-049 figure 55 . wideband adc i nterfacing e xample f eatur ing one - half of the ADL5202 and the ad9268 figure 55 shows one - half of the ADL5202 drivin g a two - pole, 100 mhz low - pass filter into the ad9268 . the ad9268 is a 16- bit, 125 msps analog - to - digital converter with a buffered wideband input, which presents a 6 k differential input impe - dance and requires between a 1 v or 2 v input swing to reach full scale. this example uses the 2 v p - p input. for optimum performance, the ADL5202 should be driven differentially, using an impedance transformer or input balun. ?15 ?14 ?13 ?12 ? 1 1 ?10 ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 0 20 40 60 80 100 120 140 160 180 200 insertion loss (db) frequenc y (mhz) 09387-050 figure 56 . measured frequency response of wideband adc interface , as depicted in figure 55 figure 55 uses a 1:3 impedance transformer to provide the 150 ? input impedance of the ADL5202 with a matched input. the outputs of the ADL5202 are biased through the two 1 h inductors, and the two 0.1 f capacitors on the outputs decouple the 5 v inducto r voltage from the input common - mode voltage of the ad9268 . the two 75 ? resistors provide the 150 ? load to the ADL5202 whose gain is load dependent. the 56 nh inductors and 4 pf capacitor constitute the (100 mhz C 1 db) low - pass filter. the two 33 ? isolation resistors suppress any switching currents from the adc input samp le - and - hold circuitry. the circuit depicted in figure 55 provides variable gain, isolation, filtering, and source matching for the ad9268 . using this circuit with the ADL5202 in a gain of 20 db (maximum gain), an snr of 69 db, and an sfdr performance of >86 dbc is achieved at 100 mhz, as shown in figure 57 . 0 ?15 ?30 ?45 ?60 ?75 ?90 ?105 ?120 ?150 ?135 0 6 12 18 24 30 36 42 48 54 60 amplitude (dbfs) frequency (mhz) snr = 69db sfdr = 86dbc noise floor = ?108db fund = ?1.035dbfs second = ?89.17dbc 5 4 + 6 3 2 09387-051 figure 57 . measured single - tone performance of the circuit in figure 55 for a 100 mhz input signal 0 6 12 18 24 30 36 42 48 54 60 amplitude (dbfs) frequency (mhz) fundamental1 = ?7.127dbfs fundamental2 = ?7.039dbfs 2f1 ? f2 = ?91.818dbc 2f2 ? f1 = ?87.083dbc noise floor = ?109.57db 0 ?15 ?30 ?45 ?60 ?75 ?90 ?105 ?120 ?150 ?135 2f1 + f2 2f1 ? f2 2f2 ? f1 f2 ? f1 + f1 + f2 2f2 + f1 09387-052 figure 58 . measured two - tone performance of the circuit in figure 55 for a 100 mhz input signal
data sheet ADL5202 rev. b | page 21 of 32 an alternative narrow - band approach is presented in figure 59. by designing a narrow band - pass antialiasing filter between the ADL5202 and the tar get adc, the output noise of the ADL5202 outside of the intended nyquist zone can be attenuated, helping to preserve the available snr of the adc. in general, the snr improves by several decibels (db) when including a reasonable order antialias ing filter. in this example, a low loss 1:3 input transformer is used to match the 150 balanced input of the ADL5202 to a 50 unbal anced source, resulting in minimum insertion loss at the input. figure 59 is optimized for driving some of the analo g devices popular unbuffered adcs, such as the ad9246 , ad9640 , and ad6 655. table 8 includes antialiasing filter component recommendations for popular if sampling center frequencies. inductor l5 works in parallel with the on - chip adc input capacitance and a portion of the capacitance presented by c 4 to form a resonant tank circuit. the resonant tank helps to ensure that the adc input act s like a real resistance at the target center frequency. in addition, the l6 inductor shorts the adc inputs at dc, which introduces a zero into the transfer function . t he ac coup ling capacitors and the bias chokes introduce additional zeros into the transfer function. the final overall frequency response takes on a band - pass characteristic, helping to reject noise outside of the intended nyquist zone. table 8 provides initial suggestions for prototyping purposes. some empirical optimization may be needed to help compensate for actual pcb parasitics. layout consideration s the ADL5202 has two output pins for each polarity, and they are oriented in an alternating fashion. when designing the board, care should be taken to minimize the parasitic capacitance due to the routing that connects the corresponding outputs together. a good practi ce is to avoid any ground or power plane under this routing region and under the chokes to minimize the parasitic capacitance. if the common - mode load capacitance including the capaci - tance of the trace is > 2 pf, use parasitic suppressing resistors at th e device output pins. the resistors should be placed in the output traces just after the crossover connections. use 5 ? series resistors (size 0402) to adequately de - q the output system without a significant decrease in gain. l6 50? a c 1 :3 75 ? 75 ? 1 h 5 v 1 h 5 v cml c4 4pf 5v 1nf 1nf 1nf l1 l3 l5 l1 l3 l5 1nf digital interface 1/2 ADL5202 c2 4pf ad9246 ad9640 ad6655 09387-053 figure 59 . narrow - band if sampling solution for unbuffered adc application s table 8 . interface filter recommendations for v arious if sampling frequencies center frequency 1 db bandwidth l1 c2 l3 c4 l5 l6 96 mhz 27 mhz 68 nh 15 pf 220 nh 15 pf 68 nh 150 nh 140 mhz 31 mhz 47 nh 11 pf 150 nh 11 pf 47 nh 82 nh 170 mhz 25 mhz 39 nh 10 pf 120 nh 10 pf 47 nh 51 nh 211 mhz 40 mhz 30 nh 7 pf 100 nh 7.5 pf 30 nh 43 nh
ADL5202 data sheet rev. b | page 22 of 32 evaluation board the ADL5202 evaluation board is available with software to program the variable gain control. it is a 4 - layer board with a split ground plane for analog and digital sections. special care is taken to place the power decoupling capacitors cl ose to the device pins. the board is designed for easy single - ended (through a mini - circuits tc3 - 1t+ rf transformer) or differential configuration for each channel. evaluation board control software the ADL5202 e valuation b oard is configured with a usb - friendly interface to program the gain of the ADL5202 . the software graphic user interface (see figure 60 ) lets users select a particular gain mode and gain level to write to the device and also to read back data from the sd io pin, showing the currently programmed gain setting. the s oftware setup files can be down loaded from the ADL5202 product page at www.analog.com . 09387-054 figure 60 . evaluation control software
data sheet ADL5202 rev. b | page 23 of 32 evaluation board sch ematics and artwork 09387-055 figure 61 . eval uation board schematic
ADL5202 data sheet rev. b | page 24 of 32 09387-056 figure 62 . rf output detail
data sheet ADL5202 rev. b | page 25 of 32 09387-057 figure 63 . schematic for the usb section of the evaluation board
ADL5202 data sheet rev. b | page 26 of 32 09387-058 figure 64 . evaluation board top layer 09387-059 figure 65 . evaluation board bottom layer
data sheet ADL5202 rev. b | page 27 of 32 evaluation board con figuration options configuration options for the main section table 9 . bill of materials for main section components function default conditions c24 to c2 7, c51 power supply decoupling. nominal supply decoupling consists of a 0.1 f capacitor to ground. c24 to c27, c51 = 0.1 f (size 0603) vpos, 3v3 gnd power supply connections. vpos, 3v3 (test loop red) installed gnd (test loop black) installed dut1 eval uation device. installed ina+, ina? inb+, inb? t1, t2 , c18 to c23, r8, r9, r20 to r29, r88, r89 input interfaces. the ina+ and ina? input sma connectors are used to drive the channel a balun in a single - ended fashion. the inb+ and inb? input smas are use d to drive the channel b balun in a single - ended fashion. the default configuration of the evaluation board is for single - ended operation. t1 and t2 are 3:1 impedance ratio rf transformers that are used to transform a 50 ? , single - ended input into a 150 ? balanced differen tial signal. c18 and c19 are balun decoupling capacitors. c20 to c23 are used for dc blocking purposes. r20 to r29 are provided for generic placement of matching components. r88 and r89 are populated to ground on one side of the transform er primary, creating the 50 ? single - ended input. ina+ (sma connector) installed ina? (sma connector) installed inb+ (sma connector) installed inb? (sma connecto r) installed t1, t2 = tc3 - 1t+ (mini - c ircuits) c18 to c23 = 0.1 f (size 0603) r8, r9, r26 to r 29 = 0 ? ( size 0402) r20 to r25, r88, r89 = open outa+, outa? outb+, inb? t3, t4, c36 to c45, r63 to r82, l1 to l4 vxa, vxb output interfaces. the outa+ and outa? output sma connectors are used to load the channel a balun in a single - ended fashion. the d efault configuration of the evaluation board is for si ngle - ended operation. the outb+ and outb? output smas are used to load the channel b balun in a single - ended fashion. the default configuration of the evaluation board is for single - ended operation. t3 and t4 are 3:1 impedance ratio transformers used to transform a 50 ? , single - ended output into a 150 ? balanced differential load. c40 to c43 are used for ac coupling. c44 and c45 are balun decoupling capacitors. r69 to r76 are provided for generic place ment of matching components. by removing r79 and r80 and installing 0 ? at r81 and r82, the output is converted to a differential output. l1 t o l4 provide dc bias to the output stages. r67 and r68 provide a connection to the 5 v power plane. optionally, r 67 and r68 can be removed and the output stage biased through the vxa and vxb terminals. out a + (sma connector) installed out a ? (sma connector) installed out b + (sma connector) installed out b ? (sma connector) installed t3, t4 = tc3 - 1t+ (mini - circuits) c36 to c45 = 0.1 f (size 0603) r63 to r72, r77 to r80 = 0 ? (size 0402) r73 to r76, r81, r82 = open l1, l2, l3, l4 = 1 h (size 0805) vxa, vxb (test loop ) installed p1, p2, pwupa, pwupb, r30 power - up interface. the ADL5202 is powered up by applying a logic high (1.4 v pwupa/ pwup b 3.3 v) to pwupa and pwupb from an external source or by installing a shunt between pin1 and pin 2 of p1 andp2. p1 installed for enable p2 installed for enable pwupa (s m a connector) installed pwupb (sma connector) installed r30 = open a0 to a5, b0 to b5, latcha, latchb, pm, mode0, mode1 r10 to r19, r31 to r62, r84 to r87 , c28 to c35 , c47 to c50 gain control interface. all of the gain control functions are fully controll ed via the usb microcontroller by using the supplied software. three - pin headers allow for manual operation of the gain control, if desired. the r31 to r34, r45, r46, r53, r54, and r84 to r 87 resistors and the c28 to c35 and c47 to c50 capacitors allow for the generic placement of filter components. the r10 to r19, r31 to r62, and r84 to r87 resistors isolate the gain control pins from the microcontroller and provide current limiting. a0 to a5 (3 - pin header) installed b0 to b5 (3 - pin header) installed la tc ha (3 - pin header) installed latchb (3 -pi n header) installed mode0 (3 -p in header) installed mode1 (3 - pin header) installed pm (3 - pin he ader) installed r10 to r19 = 1 k? (size 0603) r35 to r44 = 1 k? (size 0603) r47 to r52 1 k ? (size 0603) r55 to r62 1 k ? (s ize 0603) r31 to r34 = open r45 , r46 = open r53, r54 = open r84 to r87 = open c28 to c35 = open c47 to c50 = open
ADL5202 data sheet rev. b | page 28 of 32 configuration options for the usb section table 10. bill of materials for usb section components default conditio ns c7, c8 22 pf (size 0603) c13 1000 pf (size 0603) c2, c3, c4, c6, c10, c11, c12, c14, c16, c46 0.1 f (size 0402) c9, c15 1 f (size 0402) c1, c5 10 pf (size 0402) cr1 green led ( panasonic lnj308g8tra) p3 usb smt connector (hirose electric ux60a -mb - 5st 240- 0003 -4) r1, r2, r5 2 k? (size 0603) r6, 78.7 k? (size 0603) r7 140 k? (size 0603) r3, r4 100 k? (size 0603) r83 0 ? (size 0603) u2 usb microcontroller (cypress cy7c68013a - 56lfxc) u1 64 kb eeprom (microchip 24lc64 - i/sn) u3 low dropout r egulator (analog devices adp3334acpz ) y1 24 mhz crystal oscillator (ael crystals x24m000000s244)
data sheet ADL5202 rev. b | page 29 of 32 outline dimensions 05-06-2011-a 0.50 bsc bottom view top view pin 1 indicator exposed pad p i n 1 i n d i c a t o r seating plane 0.05 max 0.02 nom 0.20 ref coplanarity 0.08 0.30 0.23 0.18 6.10 6.00 sq 5.90 0.80 0.75 0.70 for proper connection of the exposed pad, refer to the pin configuration and function descriptions section of this data sheet. 0.45 0.40 0.35 0.25 min 4.45 4.30 sq 4.25 compliant to jedec standards mo-220-wjjd. 40 1 11 20 21 30 31 10 pkg-003438 figure 66. 40-lead lead frame chip scale package [lfcsp_wq] 6 mm 6 mm body, very very thin quad (cp-40-10) dimensions shown in millimeters ordering guide model 1 temperature range package description package option ADL5202acpz-r7 ?40c to +85c 40 lead lfcsp_wq, 7 tape and reel cp-40-10 ADL5202-evalz evaluation board 1 z = rohs compliant part.
ADL5202 data sheet rev. b | page 30 of 32 notes
data sheet ADL5202 rev. b | page 31 of 32 notes
ADL5202 data sheet rev. b | page 32 of 32 notes ? 2011 C 2013 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d09387 - 0- 9/13(b)


▲Up To Search▲   

 
Price & Availability of ADL5202

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X